On the metric properties of discrete space-filling curves
نویسندگان
چکیده
A space-filling curve is a linear traversal of a discrete finite multidimensional space. In order for this traversal to be useful in many applications, the curve should preserve "locality". We quantify "locality" and bound the locality of multidimensional space-filling curves. Classic Hilbert space-filling curves come close to achieving optimal locality.
منابع مشابه
Optimizing image steganography by combining the GA and ICA
In this study, a novel approach which uses combination of steganography and cryptography for hiding information into digital images as host media is proposed. In the process, secret data is first encrypted using the mono-alphabetic substitution cipher method and then the encrypted secret data is embedded inside an image using an algorithm which combines the random patterns based on Space Fillin...
متن کاملA Optimality of Clustering Properties of Space Filling Curves
Space filling curves have been used in the design of data structures for multidimensional data since many decades. A fundamental quality metric of a space filling curve is its “clustering number” with respect to a class of queries, which is the average number of contiguous segments on the space filling curve that a query region can be partitioned into. We present a characterization of the clust...
متن کاملFixed points of $(psi,varphi)_{Omega}$-contractive mappings in ordered p-metric spaces
In this paper, we introduce the notion of an extended metric space ($p$-metric space) as a new generalization of the concept of $b$-metric space. Also, we present the concept of $(psi ,varphi )_{Omega}$-contractive mappings and we establish some fixed point results for this class of mappings in ordered complete $p$-metric spaces. Our results generalize several well...
متن کاملNorm-Based Locality Measures of Two-Dimensional Hilbert Curves
A discrete space-filling curve provides a 1-dimensional indexing or traversal of a multi-dimensional grid space. Applications of space-filling curves include multi-dimensional indexing methods, parallel computing, and image compression. Common goodness-measures for the applicability of space-filling curve families are locality and clustering. Locality reflects proximity preservation that close-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 5 5 شماره
صفحات -
تاریخ انتشار 1996